164 research outputs found

    Nudging Digital Learning – An Experimental Analysis of Social Nudges to Manage Self-Regulated Learning and Online Learning Success

    Get PDF
    Self-regulated learning competencies are of increasing importance to ensure learning success in online learning environments. We investigate the use of digital social nudges in a self-reliant online learning situation to support learners in better managing their self-regulated learning behaviors. We ground our research on dual-process theory and social comparison theory to design social nudges. To evaluate our research model, we conduct an online experiment (N=226). The results show that social nudges positively impact learning outcomes mediated by self-regulated learning behaviors manifested using learning strategies. We found that positive emotions can further strengthen the positive effect of social nudges. Our results help to understand how social nudges can be efficiently used in online learning environments to support learners in better managing their learning processes and achieving learning outcomes. We open new chances for researchers and designers of online learning materials to support online learning processes

    A kinematic study of planetary nebulae in the dwarf irregular galaxy IC10

    Full text link
    We present positions, kinematics, and the planetary nebula luminosity function (PNLF) for 35 planetary nebulae (PNe) in the nearest starburst galaxy IC10 extending out to 3kpc from the galaxy's centre. We take advantage of the deep imaging and spectroscopic capabilities provided by the spectrograph FOCAS on the 8.2m Subaru telescope. The PN velocities were measured through the slitless-spectroscopy technique, which allows us to explore the kinematics of IC10 with high precision. Using these velocities, we conclude that there is a kinematic connection between the HI envelope located around IC10 and the galaxy's PN population. By assuming that the PNe in the central regions and in the outskirts have similar ages, our results put strong observational constraints on the past tidal interactions in the Local Group. This is so because by dating the PN central stars, we, therefore, infer the epoch of a major episode of star formation likely linked to the first encounter of the HI extended envelope with the galaxy. Our deep [OIII] images also allow us to use the PNLF to estimate a distance modulus of 24.1+/-0.25, which is in agreement with recent results in the literature based on other techniques.Comment: 10 pages, 9 figures, 2 tables. Accepted for publication in MNRA

    Optical and IR Photometry of Globular Clusters in NGC1399: Evidence for Color-Metallicity Nonlinearity

    Full text link
    We combine new Wide Field Camera~3 IR Channel (WFC3/IR) F160W (H) imaging data for NGC1399, the central galaxy in the Fornax cluster, with archival F475W (g), F606W (V), F814W (I), and F850LP (z) optical data from the Advanced Camera for Surveys (ACS). The purely optical g-I, V-I, and g-z colors of NGC1399's rich globular cluster (GC) system exhibit clear bimodality, at least for magnitudes I814>21.5I_814 > 21.5. The optical-IR I-H color distribution appears unimodal, and this impression is confirmed by mixture modeling analysis. The V-H colors show marginal evidence for bimodality, consistent with bimodality in V-I and unimodality in I-H. If bimodality is imposed for I-H with a double Gaussian model, the preferred blue/red split differs from that for optical colors; these "differing bimodalities" mean that the optical and optical-IR colors cannot both be linearly proportional to metallicity. Consistent with the differing color distributions, the dependence of I-H on g-I for the matched GC sample is significantly nonlinear, with an inflection point near the trough in the g-I color distribution; the result is similar for the I-H dependence on g-z colors taken from the ACS Fornax Cluster Survey. These g-z colors have been calibrated empirically against metallicity; applying this calibration yields a continuous, skewed, but single-peaked metallicity distribution. Taken together, these results indicate that nonlinear color-metallicity relations play an important role in shaping the observed bimodal distributions of optical colors in extragalactic GC systems.Comment: 15 pages, 12 figures, accepted for publication in the Astrophysical Journa

    HST/ACS Photometry of Old Stars in NGC 1569: The Star Formation History of a Nearby Starburst

    Full text link
    (abridged) We used HST/ACS to obtain deep V- and I-band images of NGC 1569, one of the closest and strongest starburst galaxies in the Universe. These data allowed us to study the underlying old stellar population, aimed at understanding NGC 1569's evolution over a full Hubble time. We focus on the less-crowded outer region of the galaxy, for which the color-magnitude diagram (CMD) shows predominantly a red giant branch (RGB) that reaches down to the red clump/horizontal branch feature (RC/HB). A simple stellar population analysis gives clear evidence for a more complicated star formation history (SFH) in the outer region. We derive the full SFH using a newly developed code, SFHMATRIX, which fits the CMD Hess diagram by solving a non-negative least squares problem. Our analysis shows that the relative brightnesses of the RGB tip and RC/HB, along with the curvature and color of the RGB, provide enough information to ameliorate the age-metallicity-extinction degeneracy. The distance/reddening combination that best fits the data is E(B-V) = 0.58 +/- 0.03 and D = 3.06 +/- 0.18 Mpc. Star formation began ~ 13 Gyr ago, and this accounts for the majority of the mass in the outer region. However, the initial burst was followed by a relatively low, but constant, rate of star formation until ~ 0.5-0.7 Gyr ago when there may have been a short, low intensity burst of star formation.Comment: 50 pages, including 17 figures. Accepted for publication in A

    The Cepheid Period-Luminosity Relation (The Leavitt Law) at Mid-Infrared Wavelengths: IV. Cepheids in IC 1613

    Full text link
    We present mid-infrared Period-Luminosity relations for Cepheids in the Local Group galaxy IC1613. Using archival IRAC imaging data from Spitzer we were able to measure single-epoch magnitudes for five, 7 to 50-day, Cepheids at 3.6 and 4.5 microns. When fit to the calibrating relations, measured for the Large Magellanic Cloud Cepheids, the data give apparent distance moduli of 24.29 +/- 0.07 and 24.28 +/- 0.07 at 3.6 and 4.5 microns, respectively. A multi-wavelength fit to previously published BVRIJHK apparent moduli and the two IRAC moduli gives a true distance modulus of 24.27 +/- 0.02 mag with E(B-V) = 0.08 mag, and a corresponding metric distance of 715 kpc. Given that these results are based on single-phase observations derived from exposures having total integration times of only 1,000 sec/pixel we suggest that Cepheids out to about 2 Mpc are accessible to Spitzer with modest integration times during its warm mission. We identify the main limiting factor to this method to be crowding/contamination induced by the ubiquitous population of infrared-bright AGB stars.Comment: Accepted to ApJ December 2008: 9 pages, 3 figure

    The ACS Fornax Cluster Survey. IX. The Color-Magnitude Relation of Globular Cluster Systems

    Get PDF
    We investigate the color-magnitude relation for globular clusters (GCs) -- the so-called "blue tilt" -- detected in the ACS Fornax Cluster Survey and using the combined sample of GCs from the ACS Fornax and Virgo Cluster Surveys. We find a tilt of gamma_z=d(g-z)/dz=-0.0257 +- 0.0050 for the full GC sample of the Fornax Cluster Survey (~5800 GCs). This is slightly shallower than the value gamma_z=-0.0459 +- 0.0048 found for the Virgo Cluster Survey GC sample (~11100 GCs). The slope for the merged Fornax and Virgo datasets (~16900 GCs) is gamma_z=-0.0293 +- 0.0085, corresponding to a mass-metallicity relation of Z ~ M^0.43. We find that the blue tilt sets in at GC masses in excess of M ~ 2*10^5 M_sun. The tilt is stronger for GCs belonging to high-mass galaxies (M_* > 5 * 10^10 M_sun) than for those in low-mass galaxies (M_* < 5 * 10^10 M_sun). It is also more pronounced for GCs with smaller galactocentric distances. Our findings suggest a range of mass-metallicity relations Z_GC ~ M_GC^(0.3-0.7) which vary as a function of host galaxy mass/luminosity. We compare our observations to a recent model of star cluster self-enrichment with generally favorable results. We suggest that, within the context of this model, the proto-cluster clouds out of which the GCs formed may have had density profiles slightly steeper than isothermal and/or star formation efficiencies somewhat below 0.3. We caution, however, that the significantly different appearance of the CMDs defined by the GC systems associated with galaxies of similar mass and morphological type pose a challenge to any single mechanism that seeks to explain the blue tilt. We therefore suggest that the merger/accretion histories of individual galaxies have played a non-negligible role determining the distribution of GCs in the CMDs of individual GC systems

    Sea Ice and Substratum Shape Extensive Kelp Forests in the Canadian Arctic

    Get PDF
    The coastal zone of the Canadian Arctic represents 10% of the world’s coastline and is one of the most rapidly changing marine regions on the planet. To predict the consequences of these environmental changes, a better understanding of how environmental gradients shape coastal habitat structure in this area is required. We quantified the abundance and diversity of canopy forming seaweeds throughout the nearshore zone (5–15 m) of the Eastern Canadian Arctic using diving surveys and benthic collections at 55 sites distributed over 3,000 km of coastline. Kelp forests were found throughout, covering on average 40.4% (±29.9 SD) of the seafloor across all sites and depths, despite thick sea ice and scarce hard substrata in some areas. Total standing macroalgal biomass ranged from 0 to 32 kg m–2 wet weight and averaged 3.7 kg m–2 (±0.6 SD) across all sites and depths. Kelps were less abundant at depths of 5 m compared to 10 or 15 m and distinct regional assemblages were related to sea ice cover, substratum type, and nutrient availability. The most common community configuration was a mixed assemblage of four species: Agarum clathratum (14.9% benthic cover ± 12.0 SD), Saccharina latissima (13% ± 14.7 SD), Alaria esculenta (5.4% ± 1.2 SD), and Laminaria solidungula (3.7% ± 4.9 SD). A. clathratum dominated northernmost regions and S. latissima and L. solidungula occurred at high abundance in regions with more open water days. In southeastern areas along the coast of northern Labrador, the coastal zone was mainly sea urchin barrens, with little vegetation. We found positive relationships between open water days (days without sea ice) and kelp biomass and seaweed diversity, suggesting kelp biomass could increase, and the species composition of kelp forests could shift, as sea ice diminishes in some areas of the Eastern Canadian Arctic. Our findings demonstrate the high potential productivity of this extensive coastal zone and highlight the need to better understand the ecology of this system and the services it provides.publishedVersio

    A Transition in the Accretion Properties of Radio-Loud Active Nuclei

    Full text link
    We present evidence for the presence of a transition in the accretion properties of radio-loud sources. For a sample of radio galaxies and radio-loud quasars, selected based on their extended radio properties, the accretion rate is estimated from the black hole mass and nuclear luminosity. The inferred distribution is bimodal, with paucity of sources at accretion rates, in Eddington units, of order ~ 10^{-2} - assuming a radiative efficiency of 10 per cent - and possibly spanning one-two orders of magnitude. Selection biases are unlikely to be responsible for such behavior; we discuss possible physical explanations, including a fast transition to low accretion rates, a change in the accretion mode/actual accretion rate/radiative efficiency, the lack of stable disc solutions at intermediate accretion rates or the inefficiency of the jet formation processes in geometrically thin flows. This transition might be analogous to spectral states (and jet) transitions in black hole binary systems.Comment: 14 pages, 4 figures - Accepted for publication in MNRA

    The ACS Fornax Cluster Survey. VI. The Nuclei of Early-Type Galaxies in the Fornax Cluster

    Full text link
    The Advanced Camera for Surveys (ACS) Fornax Cluster Survey is a Hubble Space Telescope program to image 43 early-type galaxies in the Fornax cluster, using the F475W and F850LP bandpasses of the ACS. We employ both 1D and 2D techniques to characterize the properties of the stellar nuclei in these galaxies, defined as the central "luminosity excesses" relative to a Sersic model fitted to the underlying host. We find 72+/-13% of our sample (31 galaxies) to be nucleated, with only three of the nuclei offset by more than 0.5" from their galaxy photocenter, and with the majority of nuclei having colors bluer than their hosts. The nuclei are observed to be larger, and brighter, than typical Fornax globular clusters, and to follow different structural scaling relations. A comparison of our results to those from the ACS Virgo Cluster Survey reveals striking similarities in the properties of the nuclei belonging to these different environments. We briefly review a variety of proposed formation models and conclude that, for the low-mass galaxies in our sample, the most important mechanism for nucleus growth is probably infall of star clusters through dynamical friction, while for higher mass galaxies, gas accretion triggered by mergers, accretions and tidal torques is likely to dominate, with the relative importance of these two processes varying smoothly as a function of galaxy mass. Some intermediate-mass galaxies in our sample show a complexity in their inner structure that may be the signature of "hybrid nuclei" that arose through parallel formation channels.Comment: 34 pages, 27 figures, accepted for publication in ApJ
    corecore